

# Geometric group theory

## Example sheet 1

Lent 2023

Questions marked \* are more involved.

1. Prove that  $F_2$ , the free group of rank 2, contains a subgroup isomorphic to  $F_\infty$ , the free group of countably infinite rank. [*Hint: Realise  $F_2$  as the fundamental group of a suitable space, and exhibit an appropriate covering space.*]
2. Equip  $\mathbb{Z}$  with the standard metric  $d(x, y) = |x - y|$ . The isometry group of  $\mathbb{Z}$  is called the *infinite dihedral group* and denoted by  $D_\infty$ . Prove that  $D_\infty$  is isomorphic to each of the following:
  - (a)  $\langle s, t \mid s^2, stst \rangle$ ;
  - (b) the free product  $(\mathbb{Z}/2\mathbb{Z}) * (\mathbb{Z}/2\mathbb{Z})$ ;
  - (c) the unique non-trivial semidirect product  $\mathbb{Z} \rtimes (\mathbb{Z}/2\mathbb{Z})$ .
3. Prove that the fundamental group of the Klein bottle is isomorphic to the unique non-trivial semidirect product  $\mathbb{Z} \rtimes \mathbb{Z}$ .
4. Let  $\Sigma$  be the closed, orientable surface of genus 2. Exhibit a simple closed curve  $\alpha$  on  $\Sigma$  so that cutting along  $\alpha$  decomposes  $\Sigma$  as an amalgamated free product. Exhibit a simple closed curve  $\beta$  on  $\Sigma$  so that cutting along  $\beta$  decomposes  $\Sigma$  as an HNN extension.
5. Consider the (2,3)-Baumslag–Solitar group  $BS(2, 3) = \langle a, b \mid ba^2b^{-1}a^{-3} \rangle$ .
  - (a) Express  $BS(2, 3)$  as an HNN extension.
  - (b) Prove that there is a surjective homomorphism  $\phi$  from  $BS(2, 3)$  to itself that sends  $a$  to  $a^2$  and  $b$  to  $b$ .

(c) Show that  $[bab^{-1}, a^2]$  is in the kernel of  $\phi$ .

6. The *Heisenberg group* is the group

$$H = \left\{ \begin{pmatrix} 1 & x & z \\ 0 & 1 & y \\ 0 & 0 & 1 \end{pmatrix} \middle| x, y, z \in \mathbb{Z} \right\}$$

of integer matrices. Prove that there is a short exact sequence

$$1 \rightarrow \mathbb{Z} \rightarrow H \rightarrow \mathbb{Z}^2 \rightarrow 1,$$

and that this short exact sequence does not split.

7. Let  $G$  be a finitely generated group. Show that  $G$  is infinite if and only if any Cayley graph  $\text{Cay}(G, S)$  contains an infinite path.

8. Let  $F_n$  be the free group of rank  $n$ . Prove that  $\text{Aut}(F_n)$  contains a subgroup isomorphic to  $\mathbb{Z}^{2n-2}$ .

9. Prove that the standard Cayley tree of the free group of rank 2 admits uncountably many graph automorphisms.

10. \* Find an algorithm that determines whether or not a given pair of elements  $g, h$  in the free group  $F_n$  are conjugate.

11. \* Let  $G = A * B$  be a free product. Let  $X, Y$  be simplicial complexes with fundamental groups  $A$  and  $B$  respectively. Construct a simplicial complex  $Z$  with fundamental group  $G$  by gluing the two ends of a closed interval  $I$  to base points in  $A$  and  $B$ . Consider an element

$$g = a_1 b_1 \dots a_n b_n$$

of  $G$ , and suppose that  $g = 1$ .

(a) Consider a loop  $\gamma$  in  $Z$  representing  $g$ . Show that, after possibly modifying by a homotopy,  $\gamma$  extends to a simplicial map from a disc to  $Z$ . [You may use the simplicial approximation theorem without proof.]

(b) By considering the preimage of the midpoint of  $I$  in the disc, prove that some term  $a_i$  or  $b_i$  of  $g$  is trivial.

(c) Formulate a notion of reduced words for free products, and prove that every non-trivial element is equal to a unique reduced word.